
Calculations of V-V Transfer Rates in H2 and Comparison with Experiment†

J. D. Kelley*
The UniVersity of MissourisSt. Louis, St. Louis, Missouri 63121-4400

ReceiVed: September 19, 2008; ReVised Manuscript ReceiVed: NoVember 18, 2008

Recent observations on VV transfer in H2 have shown interesting results. For nonresonant processes, comparison
of the experimental rate constants with the results of previous semiclassical calculations, quantum oscillators/
classical rotors coupled via classical collisions, showed the theoretical rate constants to be too slow by a
factor of 3 or more. The semiclassical rate constant of the resonant VV process (V ) 1 + V ) 0 f V ) 0 +
V ) 1) was also found to be too slow, by more than an order of magnitude, compared with the experimental
rate. Further, the semiclassical model predicted the value of k(1,1f0,2) to exceed that of k(1,0f0,1), but the
experimental data shows it to be a factor of approximately 2 less. In this work we employ an accurate interaction
potential for the H2-H2 system, and treat both rotation and vibration of the diatoms as coupled quantum-
mechanical degrees of freedom. These new calculated results are in better overall agreement with the near-
resonant experimental values, but the calculated rate constants are a factor of 2 to 3 larger than experiment
for the nonresonant processes

Introduction

Recent results from Ahn, Adamovich and Lempert1 (AAL)
on vibration-to-vibration (VV) transfer in H2 have shown
interesting behavior. The measured rate constant for the non-
resonant process,

H2(V) 1)+H2(V) 1)fH2(V) 0)+H2(V) 2) (1)

is consistent with the previously reported experimental values
of Kreutz et al.2 (K) and Saiki et al.3 (S). However, for
nonresonant processes, comparison of the experimental rates
with the results of previous semiclassical calculations4 showed
the theoretical rate constants to be too slow, by a factor of
approximately 3. The semiclassical rate constant for the resonant
VV process,

H2(V) 1)+H2(V) 0)fH2(V) 0)+H2(V) 1) (2)

was also found to be too slow, by an order of magnitude or
more, compared with the experimental rate constants obtained
in AAL and S. The resonant rate constant value was also
measured by Farrow and Chandler5 (FC). Both the FC and S
values are somewhat smaller than that given by AAL, but agree
within their stated error bars. The previous semiclassical model4,6

predicted the value of k(1,1f0,2) for process (1) to exceed that
of k(1,0f0,1) for process (2), but the experimental data show
it to be smaller. In this work we employ an accurate interaction
potential for the H2-H2 system and recognize the effects of
the large anharmonicity constant and rotational constant for H2.

These two parameter values set H2 apart from other homonuclear
diatomics, and necessitate a treatment in which both rotation
and vibration are coupled and treated quantum-mechanically.
The rotational states are not indicated in reactions (1) and (2),
but they play a role in both the experiments and calculations,
and are discussed below.

Summary of Experimental Results and Theoretical
Approach

Experimental Summary. Figure 1 summarizes the various
experimental rate constant values for VV transfer in collisions
between H2 molecules, one of which is in the first excited
vibrational state, V ) 1, and the other in vibrational states
ranging from V′ ) 0 through V′ ) 4. The rate constants are for
vibrational exchange in the vibrationally exothermic direction,
i.e. V ) 1 collides with V′ to yield V ) 0 and V′ + 1. The figure
also shows theoretical results that will be discussed later. The
most complete set of data is that of AAL,1 who used Raman
techniques to pump hydrogen from V ) 0 to V ) 1, and then
the time evolution of the vibrational population to higher V-states
was followed. The data analysis involved solving a set of
coupled equations with variable vibrational exchange rate
constants until a “best fit” to the observed time evolution of
the vibrational state distribution was obtained.
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Figure 1. Comparison of experimental VV rate constant values
reported in AAL b (ref 1), FC 9 (ref 4), K 2 (ref 2), and S [ (ref 3).
The values are rotation-averaged and represent V1 ) 1, V2 ) V - 1 f
V1 ) 0, V2 ) V. The FC values were obtained at 295 K and the others
at 298 K. The FC, K and S points are offset for clarity. The calculated
VV rate constants at 298 K are shown in the upper curve.
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The vibrational pumping process in AAL exclusively popu-
lated the J ) 1 rotational state of V ) 1 in H2. This fact allowed
measurement of reaction (2), because one can observe the
collisional population of V ) 1, J ) 0 or 2. Coupling of vibration
and rotation splits the V ) 1 state energy enough so that the J
) 0 and J ) 2 states are distinguishable from J ) 1. There is
no collisional mixing of the even and odd rotational states of
H2 because the nuclear spin symmetry, ortho or para, forbids
this process. Therefore, the appearance of V ) 1, J ) 0 or 2
must be the result of vibrational energy exchange from V ) 1,
J ) 1. The same underlying physics allowed FC to measure
the rate constant for reaction (2), also with a Raman method.
Rotationally state-specific constants for nonresonant processes
such as reaction (1) and reactions involving higher V-states, i.e.
(V1 ) 1, V2 ) V - 1f V1 ) 0,V2 ) V) are not available, and the
experimental values in Figure 1 represent an average over a
thermal distribution of J-states. The J ) 1 state is the most
probable J-state in a thermal distribution of normal hydrogen
at temperatures around 300 K, and it dominates the thermal
average. As noted above, the AAL, FC and S rate constants for
the resonant VV process agree within their respective error bars,
as do the K and AAL values for the first nonresonant process
(V ) 1, V′ ) 1 f V ) 0, V′ ) 2); the value in S is a bit lower.
The energy differences between initial and final states, the
vibrational energy defects, are shown in Table 1 for specific
initial and final V, J states (negative values signify exothermic
processes). The rate constant values in Table 1 are those
calculated in this work as described below.

Theoretical Approach. This study was initiated in response
to a suggestion in AAL that the results in Figure 1 could be
explained by attributing the rate constant behavior as a function
of V-state to the interplay between vibrational and rotational
motion. To execute a reasonably rigorous calculation of the
collisional transfer of energy between H2 molecules, one must
assemble several pieces. First, a description of the separated
molecule motion is required. In this work the H2 wave functions
are eigenfunctions of the RKR potential for the H2 electronic
ground state,7 and thus they are rotating anharmonic oscillators
with rotation and vibration coupled.8 Molecular constants for
H2 were obtained from Huber and Herzberg.9 The defect data
in Table 1 were obtained using these constants. Next, a
sufficiently accurate interaction potential must be used to
describe the collisional interaction of the two H2 molecules. The
potential used here was constructed by Kelley and Bragg10 to
describe collision broadening and line shifting in the quadrupole
spectrum of molecular hydrogen. This potential gave good
agreement between measured and calculated broadening and
shifting coefficients in numerous transitions in the H2 funda-
mental and overtone bands, and is used here without modifica-
tion. This interaction potential was based on an ab initio
potential11,12 for collision between two H2 rigid rotors with the
H-H separation fixed at r0, the average separation for a
molecule in V ) 0. This potential in a space-fixed coordinate
system gives the interaction dependence on intermolecular
distance R, the orientation angles of each molecule θ1,φ1 and

θ2,φ2, and the relative orientation angles Θ,Φ. The dependence
on the Η2 vibrational coordinates r1,r2 was obtained from an
ab initio potential for He-H2..13,14 The r-coefficients from the
He-H2 potential were adjusted in ref 10 to optimize the fit to
line shift data. As stated above, the resulting interaction potential
successfully described collision phenomena in the H2 quadrupole
spectra. This potential, VI, can be written as an expansion in
spherical harmonics, denoted Yλ

VI)V000(r1,r2,R)+V202(r1,r2,R)Y2(θ1�1)Y0(θ2�2)Y2(ΘΦ)+

V022(r1,r2,R)Y0(θ1�1)Y2(θ2�2)Y2(ΘΦ)+ (higher terms)...

(3)

The first term in VI represents the collision of two radially
vibrating spheres; it can produce VV transfer, but it does not
produce any change in the J-state of either molecule. Any rotational
participation in the VV process, or even pure rotational excitation,
is a result of the higher terms in the expansion. The magnitude of
the spherical V000 term is substantially greater than that of the higher
terms10 (see Table 2), and preliminary calculations quickly
established that the higher terms did not contribute significantly to
any of the VV rate constants calculated here. Only the spherical
term is important in this context. With this in mind, we write the
V000 term in more detail and set it equal to VI

VI(r1,r2,R))A exp(-cR- dR2)(1+R∆r1 +R∆r2 +

R2∆r1∆r2 + ...)- f(R)ΣnCn⁄R
n(1+Rn∆r1 +Rn∆r2 +

Rn
2∆r1∆r2 + ...) (4)

where n ) 6, 8, 10 and ∆r is r - r0. The function f(R) serves to
damp the contribution of the long-range attractive terms for small
R, and is discussed in ref 10. The values of the potential parameters
are given in Table 2. Vibrational excitation and energy transfer
result from ∆r terms in eq 4. The linear terms allow vibrational
excitation of one H2 or the other. This process requires an energy
transfer of about 4000 cm-1 to or from the relative motion, and is
much less likely than VV transfer, which requires only a few
hundred cm-1 (see Table 1). The VV transfer process is effected
by the bilinear ∆r1∆r2 term, which allows simultaneous changes
in the vibrational states of both colliding molecules.

The next step in the calculation is to describe the collision
process and its results. A semiclassical method is used here, but
one that is different from that usually employed. In its more
common formulation, as in ref 4 for example, the relative
intermolecular motion and the rotational motion of the colliding
molecules are treated classically. The resulting collision trajectory
produces a time-dependent perturbation on the vibrational motion,
which is treated quantum-mechanically. This perturbation results
in vibrational state changes through the ∆r terms in the interaction.
Such an approach is valid for diatomics such as O2 and CO, because

TABLE 1: Transitions, Defects and Rate Constants

transition (V, J + V′, J′
f V-1, J + V′ + 1, J′) defect (cm-1) rate constant (cm3 s-1)

1, 1 + 0, 0 f 0, 1 + 1, 0 5.9 1.2 × 1013

1, 1 + 0, 2 f 0, 1 + 1, 2 -12.0 1.3 × 1013

1, 1 + 1, 1 f 0, 1 + 2, 1 -239 2.2 × 1013

1, 1 + 2, 1 f 0, 1 + 3, 1 -465 2.8 × 1013

1, 1 + 3, 1 f 0, 1 + 4, 1 -694 3.1 × 1013

1, 1 + 4, 1 f 0, 1 + 5, 1 -922 3.0 × 1013

TABLE 2: Potential Parameters in Atomic Units10

V000 V202
a

A 3.726 0.1315
c 1.471 1.6
d 0.0224 0
R 0.91 2.26
C6 12.14 0.254
R6 0.57 1.35
C8 215.2 12.18
R8 0.86 2.0
C10 4813.0 307.2
R10 1.15 1.6

a V202 was used only in preliminary calculations.
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the rotational level separations are only a few tens of wavenumbers
and the interaction potentials are more anisotropic that that for
H2-H2. The rotational excitation rates for these heavier diatomics,
even at room temperature, are comparable with the gas kinetic
collision rate and multiquantum rotational changes are the rule. It
is then reasonable to consider rotation to be a classical variable,
directly coupled to the collisional motion which is also treated
classically.

Hydrogen is a special case because its small mass leads to
rotational level spacings of hundreds rather than tens of wave-
numbers. Moreover the rotational quantum number J must change
by at least ∆J )2 as a result of the nuclear spin symmetry
restriction mentioned above. As a result, rotational excitation is
much more difficult than for heavier diatomics, and the rates are
less than 1/100 of the gas kinetic collision rate at room tempera-
ture.15 Given these circumstances, a better semiclassical treatment
for H2-H2 is one in which both vibration and rotation are treated
quantum-mechanically, and only the relative collision motion is
classical. This is the approach used here. Using eq 4 for the
interaction potential, the collision coordinate R becomes R(t), and
the resulting time-dependent perturbation yields transitions between
initial state V1J1,V2J2 and final state V′1J1,V′2J2 where the J’s are
unchanged. The probability in a particular collision that a given
final state f is produced from the initial state i can be obtained
from first-order perturbation theory

Pif ) |(i ⁄ p)∫ 〈i|VI(r1,r2,t)| f 〉 exp[i(Ei- Ef)t ⁄ p]G(t) dt|2

(5)

where VI(r1,r2,t) is obtained from eq 4 by substituting R(t)
obtained by integrating the classical equations of motion for an
H2-H2 collision proceeding via VI(r1)r0,r2)r0,R); Ei - Ef is
the energy difference between the initial and final state, and
G(t) is given by

G(t)) exp[(i ⁄ h)∫ t(Vff - Vii) dt′] (6)

This G-factor was described by Mies16 and represents the
contribution of the difference between the diagonal matrix elements
of the interaction potential between the initial state and the final
state. This term is sometimes omitted, but the omission is incorrect
except for systems described by harmonic oscillators for which
G(t) ) 1 and therefore Vii ) Vff when the interaction potential is
linear and bilinear in the separations ∆r. For the anharmonic
rotating oscillators used in this calculation, Vff - Vii is small, but
not zero, and the G-factor makes an increasing contribution to the
calculated probabilities and rate constants for VV transfer as V
increases. The use of first-order perturbation theory for this H2-H2

system is justified by the fact that the probabilities for all the state-
changing processes, pure rotation and rotation-vibration, are small
for the collisions that contribute to a room-temperature V-V rate
constant average. The sum of these probabilities is much less than
unity for these collisions, and this is the criterion for validity of a
first order calculation.

The probabilities generated via eq 5 are for a single collision
with specified relative collision energy and angular momentum.
In order to obtain rate constants, we choose an initial collision
energy and angular momentum, and numerically solve the classical
equations for relative motion. The resulting time-dependent interac-
tion matrix element is multiplied by the exponential factor and G(t),
and the integral in eq 5 is evaluated. This process is repeated for
a set of relative angular momenta (equivalently, impact parameters)
sufficiently large that the results become invariant to further
increase. The collision energy is then changed, and the process

repeated. At each collision energy, an integration over impact
parameter yields a cross section for the process if f. This energy
dependent set of cross sections is then averaged over a Maxwellian
distribution of energy to obtain a thermal rate constant for the
particular process. The rate constants discussed below were
obtained in this way. One further detail should be mentioned. For
these inelastic collision processes, a “symmetrized” energy is used
in obtaining the probabilities given by eq 5. The symmetrized
energy is obtained by adding to the initial collision energy half
the energy lost or subtracting half the energy gained by the internal
degrees of freedom. This procedure accounts for the addition or
loss of energy in relative motion because of the transition.16 The
accuracy of the classical trajectories, which were obtained using
fourth-order Runge-Kutta algorithm,17 is ensured by checking
conservation of energy and angular momentum, varying the time
step, integrating a subset of trajectories backward from the final to
initial state, and increasing the range of impact parameters and
energies until the rate constants did not change.

Results and Discussion

Calculated rate constants are shown in Table 1 for specific
transitions, along with the associated vibrational defects. Typically,
only the constants for molecules in J ) 1 are shown in Table 1
because these dominate the room-temperature average over J, and
the average values do not differ much from these values. For the
resonant case, rate constants for transfer to molecules in both J )
0 and J ) 2 are shown; the values are essentially the same. Figure
2 shows a comparison of the J-averaged values calculated here
with the set of rate constants calculated by Cacciatore and Billing
(CB),4 along with values from Billing and Kolesnick6 for the
process V ) 1 + V ) 1f V ) 0 + V ) 2. The values are for rate
constants in the exothermic direction. The rate constants from
Billing’s group are appreciably smaller than those calculated here.
The major contribution to this difference is the difference in
interaction potentials used in the two calculations. The effective
R-values in the earlier work4 are smaller than those employed here
(Table 2), and the calculated rate constants depend on the square
of the matrix elements for the bilinear term, or on R4

. The various
values at V ) 2 from Billing’s group result from fits to different
ab initio potential surfaces; this is discussed in detail in ref 6. A
point of interest is that the three points shown by “9” represent
results from different fits to the H2-H2 surface obtained by
Schwenke.18 The factor of three variation in the rate constants
dramatically illustrates the sensitivity of the V-V calculation to
the r-dependence of the surface and the quality of the fit.

Figure 2. Comparison of calculated rate constants b with Billing et al.
values [ (ref 4) and 9 (ref 6) at T ) 298 K. The rate constants are given
in the exothermic direction, 1, V - 1 f 0, V.
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The rate constants calculated in this work are also shown in
Figure 1 along with the various experimental values and error bars
as discussed above. The calculated values are in reasonable
agreement with the data for the “resonant” process, but they are
2-3 times larger than experiment for the nonresonant transitions.
Moreover, the drop in the experimental rate constant from the
resonant V ) 1 to the first nonresonant V ) 2 value is not seen in
this calculation, nor is it seen in the CB results (Figure 2). The
origin of the drop in the experimental rate constant from V ) 1 to
V ) 2 is unknown. There is no obvious alteration in the interaction
potential which would produce this behavior.

Summary and Conclusions

This paper describes a set of semiclassical calculations of the
rate constants for VV energy transfer in collisions between
hydrogen molecules. Unlike most semiclassical treatments, mo-
lecular vibration and rotation are coupled and treated quantum
mechanically using RKR wave functions for each V,J state. The
calculations used an intermolecular interaction potential for the
H2-H2 that had been previously shown to accurately describe
collisional line broadening and shifting in the quadrupole spectrum
of H2. This potential was used here without any alteration. The
results are mixed, in that the calculated rate constant for the resonant
V ) 1 + V ) 0 f V ) 0 + V ) 1 process are accurate, but the
calculated and observed values differ for the non resonant VV
processes. In addition, the drop in rate constant from the resonant
to first nonresonant VV process is not captured in the calculation.
The results obtained here are compared with earlier calculations
in which rotation was treated classically. The differences among
the calculations can be at least qualitatively attributed to differences
in the interaction potentials employed. It is not obvious that the
different dynamics in a system with classical rather than quantum
rotors plays an important role. In general, these older calculations
do not agree with the data as well as the calculations developed
here. A significant result in this work is that the anisotropic potential
terms did not play a role; the rotational degree of freedom does
not significantly participate in the VV processes. This observation
is apparently not true for VT energy transfer19 in H2, a process
dominated by higher energy collisions in the thermal rate constant
average. The VV transfer rates with their relatively small defects
depend on collisions with energies well below 0.1 eV, as do the
line broadening and shifting processes for which the interaction
potential given by eq 4, with the parameters in Table 2, was
optimized. It is not surprising that an interaction potential optimized
for higher energies is more anisotropic than that used in this work.
Note that the interaction potential used in this work, despite its
partial lack of a priori rigor, does in fact fit a large amount of
spectroscopic10 and VV transfer data for H2 reasonably well.

There are a few lessons to be learned from the attempt to describe
this deceptively simple system and process. First, the fact that the
calculated V-V rates depend on the potential parameter R to the
fourth power presents a challenge to anyone attempting an “exact”
calculation. The value of R represents the slope of the change in
interaction potential as the intramolecular H-H distance is varied
from r0. The R4 dependence means that a 20% uncertainty in R
implies a factor of 2 uncertainty in the rate constant, and thus
requires the interaction potential to be very accurately calculated
for small displacements around r0 in order to approach 10-20%
accuracy in the rate constants. A second related challenge is
obtaining an accurate value for the difference in diagonal matrix
elements of the interaction potential between initial and final states.
Neglect of the “G-factor” (eq 6) decreases the calculated rate
constant (Figure 1) about 10% at V ) 3, 40% at V ) 4 and a factor
of 3 at V ) 5; this reduction becomes quite sensitive to Vff - Vii as

the defect increases with upper state V-level. At this point it seems
that the appropriate next step for H2 VV calculations is to undertake
a fully quantum mechanical scattering calculation with the best
interaction potential available and employing vibrotational wave
functions for H2 generated by the RKR method. Given that the
number of states required is much smaller than for other diatomics,
this is a feasible calculation. In fact, a beginning has been made in
this direction by Panda et al.20 This work included fully quantum
mechanical calculations of cross sections for H2(V1)0,j1)0) +
H2(V2)1,j2)1)fH2(V1)1,j1′) + H2(V2)0,j2′) for collision energies
between 0.1 and 1.0 eV. This collision energy range is too high to
allow rate constants at 298 K to be obtained, and vibrational
quantum numbers greater than unity were not considered, but the
results are still useful in comparison with the present study. The
cross section for the resonant, rotationally elastic VV process j1′
) 0, j2′ ) 1 is an order of magnitude larger than the values for
rotationally inelastic processes, e.g. j1′ ) 2, j2′ ) 1, at 0.1 eV
collision energy.20 This is consistent with the neglect of such
processes at lower collision energies in the present study. The value
for the resonant VV cross section at 0.1 eV calculated by Panda et
al.20 is 0.013 au2 and the value calculated using the methods here
is 0.027 au2, fair agreement considering that a different potential
energy surface21 was used in ref 20.

Acknowledgment. I thank Profs. Don Thompson and Walter
Lempert for helpful comments on this work.

References and Notes

(1) Ahn, T.; Adamovich, I.; Lempert, W. R. Chem. Phys. 2007, 335,
55.

(2) Kreutz, T. G.; Gelfand, J.; Miles, R. B.; Rabitz, H. Chem. Phys.
1988, 124, 359.

(3) Saiki, D. J.; Cureton-Chinn, S.; Kelly, P. B.; Augustine, M. P.
J. Chem. Phys. 2005, 123, 104311.

(4) Cacciatore, M.; Billing, G. D. J. Phys. Chem. 1992, 96, 217.
(5) Farrow, R. L.; Chandler, D. W. J. Chem. Phys. 1988, 89, 1994.
(6) Billing, G. D.; Kolesnock, R. E. Chem. Phys. Lett. 1993, 215, 571.
(7) The ∆r matrix elements for H2 were calculated by Prof. R. J. LeRoy,

U. of Waterloo, using his program LEVEL 7.7; a subset of these values
appears on his Web site at http://scienide.uwaterloo.ca/∼rleroy/potentials/
H2D2HD/.

(8) A preliminary version of this work was presented at the 39th AIAA
Lasers and Plasmadynamics Conference, paper AIAA-2008-3779, June
2008. That work used rotating Morse oscillator wave functions to evaluate
the transition matrix elements. Unfortunately, an error in the wave function
program led to ∆r matrix element values that were too low by almost 30%.
The resulting rate constants, which depend on ∆r4, were therefore a factor
of 3 or more too small. The reported results appear online in the Conference
summaries and should be ignored.

(9) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular
Structure, IV. Constants of Diatomic Molecules; Van Nostrand and Reinhold:
New York, 1979; p 250.

(10) Kelley, J. D.; Bragg, S. L. Phys. ReV. A 1986, 34, 3003.
(11) Norman, M. J.; Watts, R. O.; Buck, U. J. Chem. Phys. 1984, 81,

3500.
(12) Schaefer, J.; Meyer, W. J. Chem. Phys. 1979, 70, 344.
(13) Meyer, W.; Hariharan, P. C.; Kutzelnigg, W. J. Chem. Phys. 1980,

73, 1880.
(14) Senff, U. E.; Burton, P. G. J. Phys. Chem. 1985, 89, 797.
(15) See for example: Sultanov, R. A.; Guster, D Chem. Phys. 2006,

326, 641.
(16) Mies, F. H. J. Chem. Phys. 1964, 41, 903.
(17) Press, W. H., Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.

Numerical Recipes in FORTRAN, 2nd ed.; Cambridge University Press:
Cambridge, 1992.

(18) Schwenke, D. W. J. Chem. Phys. 1988, 89, 2076.
(19) Pogrebnya, S. K.; Mandy, M. E.; Clary, D. C. Int. J. Mass Spectrom.

2003, 335, 223–224.
(20) Panda, A. N.; Otto, F.; Gatti, F.; Meyer, H-D. J. Chem. Phys. 2007,

127, 114310–1.
(21) Boothroyd, A. I.; Martin, P. G.; Keogh, W. J.; Peterson, M. J.

J. Chem. Phys. 2002, 116, 666.

JP808355Y

1998 J. Phys. Chem. A, Vol. 113, No. 10, 2009 Kelley


